Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Featureless and non-fractionalized Mott insulators on the honeycomb lattice at 1/2 site filling (1207.0498v3)

Published 2 Jul 2012 in cond-mat.str-el and cond-mat.quant-gas

Abstract: Within the Landau paradigm, phases of matter are distinguished by spontaneous symmetry breaking. Implicit here is the assumption that a completely symmetric state exists: a paramagnet. At zero temperature such quantum featureless insulators may be forbidden, triggering either conventional order or topological order with fractionalized excitations. Such is the case for interacting particles when the particle number per unit cell, f, is not an integer. But, can lattice symmetries forbid featureless insulators even at integer f? An especially relevant case is the honeycomb (graphene) lattice --- where free spinless fermions at f=1 (the two sites per unit cell mean f=1 is half filling per site) are always metallic. Here we present wave functions for bosons, and a related spin-singlet wave function for spinful electrons, on the f=1 honeycomb, and demonstrate via quantum to classical mappings that they do form featureless Mott insulators. The construction generalizes to symmorphic lattices at integer f in any dimension. Our results explicitly demonstrate that in this case, despite the absence of a non-interacting insulator at the same filling, lack of order at zero temperature does not imply fractionalization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.