Regularizers versus Losses for Nonlinear Dimensionality Reduction: A Factored View with New Convex Relaxations (1206.6455v1)
Abstract: We demonstrate that almost all non-parametric dimensionality reduction methods can be expressed by a simple procedure: regularized loss minimization plus singular value truncation. By distinguishing the role of the loss and regularizer in such a process, we recover a factored perspective that reveals some gaps in the current literature. Beyond identifying a useful new loss for manifold unfolding, a key contribution is to derive new convex regularizers that combine distance maximization with rank reduction. These regularizers can be applied to any loss.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.