Papers
Topics
Authors
Recent
2000 character limit reached

Inventory Management with Partially Observed Nonstationary Demand (1206.6283v1)

Published 27 Jun 2012 in math.OC, math.PR, and q-fin.GN

Abstract: We consider a continuous-time model for inventory management with Markov modulated non-stationary demands. We introduce active learning by assuming that the state of the world is unobserved and must be inferred by the manager. We also assume that demands are observed only when they are completely met. We first derive the explicit filtering equations and pass to an equivalent fully observed impulse control problem in terms of the sufficient statistics, the a posteriori probability process and the current inventory level. We then solve this equivalent formulation and directly characterize an optimal inventory policy. We also describe a computational procedure to calculate the value function and the optimal policy and present two numerical illustrations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.