Contraction and optimality properties of adaptive Legendre-Galerkin methods: the 1-dimensional case (1206.5524v1)
Abstract: As a first step towards a mathematically rigorous understanding of adaptive spectral/$hp$ discretizations of elliptic boundary-value problems, we study the performance of adaptive Legendre-Galerkin methods in one space dimension. These methods offer unlimited approximation power only restricted by solution and data regularity. Our investigation is inspired by a similar study that we recently carried out for Fourier-Galerkin methods in a periodic box. We first consider an "ideal" algorithm, which we prove to be convergent at a fixed rate. Next we enhance its performance, consistently with the expected fast error decay of high-order methods, by activating a larger set of degrees of freedom at each iteration. We guarantee optimality (in the non-linear approximation sense) by incorporating a coarsening step. Optimality is measured in terms of certain sparsity classes of the Gevrey type, which describe a (sub-)exponential decay of the best approximation error.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.