Papers
Topics
Authors
Recent
2000 character limit reached

On uniqueness of tangent cones for Einstein manifolds (1206.4929v1)

Published 21 Jun 2012 in math.DG, math.AG, and math.AP

Abstract: We show that for any Ricci-flat manifold with Euclidean volume growth the tangent cone at infinity is unique if one tangent cone has a smooth cross-section. Similarly, for any noncollapsing limit of Einstein manifolds with uniformly bounded Einstein constants, we show that local tangent cones are unique if one tangent cone has a smooth cross-section.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.