Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

List-coloring graphs on surfaces with varying list-sizes (1206.3945v3)

Published 18 Jun 2012 in math.CO

Abstract: Let $G$ be a graph embedded on a surface $S_\varepsilon$ with Euler genus $\varepsilon > 0$, and let $P\subseteq V(G)$ be a set of vertices mutually at distance at least 4 apart. Suppose all vertices of $G$ have $H(\varepsilon)$-lists and the vertices of $P$ are precolored, where $H(\varepsilon)=\Big\lfloor\frac{7 + \sqrt{24\varepsilon + 1}}{2}\Big\rfloor$ is the Heawood number. We show that the coloring of $P$ extends to a list-coloring of $G$ and that the distance bound of 4 is best possible. Our result provides an answer to an analogous question of Albertson about extending a precoloring of a set of mutually distant vertices in a planar graph to a 5-list-coloring of the graph and generalizes a result of Albertson and Hutchinson to list-coloring extensions on surfaces.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.