Papers
Topics
Authors
Recent
2000 character limit reached

Reduction of Stokes-Dirac structures and gauge symmetry in port-Hamiltonian systems (1206.3781v1)

Published 17 Jun 2012 in math.DG, math-ph, math.MP, and math.OC

Abstract: Stokes-Dirac structures are infinite-dimensional Dirac structures defined in terms of differential forms on a smooth manifold with boundary. These Dirac structures lay down a geometric framework for the formulation of Hamiltonian systems with a nonzero boundary energy flow. Simplicial triangulation of the underlaying manifold leads to the so-called simplicial Dirac structures, discrete analogues of Stokes-Dirac structures, and thus provides a natural framework for deriving finite-dimensional port-Hamiltonian systems that emulate their infinite-dimensional counterparts. The port-Hamiltonian systems defined with respect to Stokes-Dirac and simplicial Dirac structures exhibit gauge and a discrete gauge symmetry, respectively. In this paper, employing Poisson reduction we offer a unified technique for the symmetry reduction of a generalized canonical infinite-dimensional Dirac structure to the Poisson structure associated with Stokes-Dirac structures and of a fine-dimensional Dirac structure to simplicial Dirac structures. We demonstrate this Poisson scheme on a physical example of the vibrating string.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.