Cumulative distribution networks and the derivative-sum-product algorithm (1206.3259v1)
Abstract: We introduce a new type of graphical model called a "cumulative distribution network" (CDN), which expresses a joint cumulative distribution as a product of local functions. Each local function can be viewed as providing evidence about possible orderings, or rankings, of variables. Interestingly, we find that the conditional independence properties of CDNs are quite different from other graphical models. We also describe a messagepassing algorithm that efficiently computes conditional cumulative distributions. Due to the unique independence properties of the CDN, these messages do not in general have a one-to-one correspondence with messages exchanged in standard algorithms, such as belief propagation. We demonstrate the application of CDNs for structured ranking learning using a previously-studied multi-player gaming dataset.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.