Papers
Topics
Authors
Recent
2000 character limit reached

On Identifying Total Effects in the Presence of Latent Variables and Selection bias

Published 13 Jun 2012 in stat.ME, cs.AI, and stat.AP | (1206.3239v1)

Abstract: Assume that cause-effect relationships between variables can be described as a directed acyclic graph and the corresponding linear structural equation model.We consider the identification problem of total effects in the presence of latent variables and selection bias between a treatment variable and a response variable. Pearl and his colleagues provided the back door criterion, the front door criterion (Pearl, 2000) and the conditional instrumental variable method (Brito and Pearl, 2002) as identifiability criteria for total effects in the presence of latent variables, but not in the presence of selection bias. In order to solve this problem, we propose new graphical identifiability criteria for total effects based on the identifiable factor models. The results of this paper are useful to identify total effects in observational studies and provide a new viewpoint to the identification conditions of factor models.

Citations (47)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.