Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

New tools for classifying Hamiltonian circle actions with isolated fixed points (1206.3195v1)

Published 14 Jun 2012 in math.SG

Abstract: For every compact almost complex manifold (M,J) equipped with a J-preserving circle action with isolated fixed points, a simple algebraic identity involving the first Chern class is derived. This enables us to construct an algorithm to obtain linear relations among the isotropy weights at the fixed points. Suppose that M is symplectic and the action is Hamiltonian. If the manifold satisfies an extra "positivity condition" this algorithm determines a family of vector spaces which contain the admissible lattices of weights. When the number of fixed points is minimal, this positivity condition is necessarily satisfied whenever dim(M)< 8, and, when dim(M)=8, whenever the S1-action extends to an effective Hamiltonian T2-action, or none of the isotropy weights is 1. Moreover there are no known examples with a minimal number of fixed points contradicting this condition, and their existence is related to interesting questions regarding fake projective spaces [Y]. We run the algorithm for dim(M)< 10, quickly obtaining all the possible families of isotropy weights. In particular, we simplify the proofs of Ahara and Tolman for dim(M)=6 [Ah,T1] and, when dim(M)=8, we prove that the equivariant cohomology ring, Chern classes and isotropy weights agree with the ones of C P4 with the standard S1-action (thus proving the symplectic Petrie conjecture [T1] in this setting).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.