Combinatorial degree bound for toric ideals of hypergraphs (1206.2512v2)
Abstract: Associated to any hypergraph is a toric ideal encoding the algebraic relations among its edges. We study these ideals and the combinatorics of their minimal generators, and derive general degree bounds for both uniform and non-uniform hypergraphs in terms of balanced hypergraph bicolorings, separators, and splitting sets. In turn, this provides complexity bounds for algebraic statistical models associated to hypergraphs. As two main applications, we recover a well-known complexity result for Markov bases of arbitrary 3-way tables, and we show that the defining ideal of the tangential variety is generated by quadratics and cubics in cumulant coordinates.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.