Papers
Topics
Authors
Recent
Search
2000 character limit reached

Communications-Inspired Projection Design with Application to Compressive Sensing

Published 9 Jun 2012 in cs.IT and math.IT | (1206.1973v1)

Abstract: We consider the recovery of an underlying signal x \in Cm based on projection measurements of the form y=Mx+w, where y \in Cl and w is measurement noise; we are interested in the case l < m. It is assumed that the signal model p(x) is known, and w CN(w;0,S_w), for known S_W. The objective is to design a projection matrix M \in Cl x m to maximize key information-theoretic quantities with operational significance, including the mutual information between the signal and the projections I(x;y) or the Renyi entropy of the projections h_a(y) (Shannon entropy is a special case). By capitalizing on explicit characterizations of the gradients of the information measures with respect to the projections matrix, where we also partially extend the well-known results of Palomar and Verdu from the mutual information to the Renyi entropy domain, we unveil the key operations carried out by the optimal projections designs: mode exposure and mode alignment. Experiments are considered for the case of compressive sensing (CS) applied to imagery. In this context, we provide a demonstration of the performance improvement possible through the application of the novel projection designs in relation to conventional ones, as well as justification for a fast online projections design method with which state-of-the-art adaptive CS signal recovery is achieved.

Citations (85)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.