Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Canonical ordering for graphs on the cylinder, with applications to periodic straight-line drawings on the flat cylinder and torus (1206.1919v3)

Published 9 Jun 2012 in math.CO and cs.DM

Abstract: We extend the notion of canonical ordering (initially developed for planar triangulations and 3-connected planar maps) to cylindric (essentially simple) triangulations and more generally to cylindric (essentially internally) $3$-connected maps. This allows us to extend the incremental straight-line drawing algorithm of de Fraysseix, Pach and Pollack (in the triangulated case) and of Kant (in the $3$-connected case) to this setting. Precisely, for any cylindric essentially internally $3$-connected map $G$ with $n$ vertices, we can obtain in linear time a periodic (in $x$) straight-line drawing of $G$ that is crossing-free and internally (weakly) convex, on a regular grid $\mathbb{Z}/w\mathbb{Z}\times[0..h]$, with $w\leq 2n$ and $h\leq n(2d+1)$, where $d$ is the face-distance between the two boundaries. This also yields an efficient periodic drawing algorithm for graphs on the torus. Precisely, for any essentially $3$-connected map $G$ on the torus (i.e., $3$-connected in the periodic representation) with $n$ vertices, we can compute in linear time a periodic straight-line drawing of $G$ that is crossing-free and (weakly) convex, on a periodic regular grid $\mathbb{Z}/w\mathbb{Z}\times\mathbb{Z}/h\mathbb{Z}$, with $w\leq 2n$ and $h\leq 1+2n(c+1)$, where $c$ is the face-width of $G$. Since $c\leq\sqrt{2n}$, the grid area is $O(n{5/2})$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.