Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Drawing Planar Graphs with Few Geometric Primitives (1703.01691v4)

Published 5 Mar 2017 in cs.CG

Abstract: We define the \emph{visual complexity} of a plane graph drawing to be the number of basic geometric objects needed to represent all its edges. In particular, one object may represent multiple edges (e.g., one needs only one line segment to draw a path with an arbitrary number of edges). Let $n$ denote the number of vertices of a graph. We show that trees can be drawn with $3n/4$ straight-line segments on a polynomial grid, and with $n/2$ straight-line segments on a quasi-polynomial grid. Further, we present an algorithm for drawing planar 3-trees with $(8n-17)/3$ segments on an $O(n)\times O(n2)$ grid. This algorithm can also be used with a small modification to draw maximal outerplanar graphs with $3n/2$ edges on an $O(n)\times O(n2)$ grid. We also study the problem of drawing maximal planar graphs with circular arcs and provide an algorithm to draw such graphs using only $(5n - 11)/3$ arcs. This is significantly smaller than the lower bound of $2n$ for line segments for a nontrivial graph class.

Citations (9)

Summary

We haven't generated a summary for this paper yet.