Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exactness and Convergence Properties of Some Recent Numerical Quadrature Formulas for Supersingular Integrals of Periodic Functions (2102.06469v1)

Published 12 Feb 2021 in math.NA and cs.NA

Abstract: In a recent work, we developed three new compact numerical quadrature formulas for finite-range periodic supersingular integrals $I[f]=\intBarb_a f(x)\,dx$, where $f(x)=g(x)/(x-t)3,$ assuming that $g\in C\infty[a,b]$ and $f(x)$ is $T$-periodic, $T=b-a$. With $h=T/n$, these numerical quadrature formulas read \begin{align*} \widehat{T}{}{(0)}n[f]&=h\sum{n-1}{j=1}f(t+jh) -\frac{\pi2}{3}\,g'(t)\,h{-1}+\frac{1}{6}\,g'''(t)\,h, \widehat{T}{}{(1)}n[f]&=h\sumn{j=1}f(t+jh-h/2) -\pi2\,g'(t)\,h{-1}, \widehat{T}{}{(2)}n[f]&=2h\sumn{j=1}f(t+jh-h/2)- \frac{h}{2}\sum{2n}_{j=1}f(t+jh/2-h/4). \end{align*} We also showed that these formulas have spectral accuracy; that is, $$\widehat{T}{}{(s)}_n[f]-I[f]=O(n{-\mu})\quad\text{as $n\to\infty$}\quad \forall \mu>0.$$ In the present work, we continue our study of these formulas for the special case in which $f(x)=\frac{\cos\frac{\pi(x-t)}{T}}{\sin3\frac{\pi(x-t)}{T}}\,u(x)$, where $u(x)$ is in $C\infty(\mathbb{R})$ and is $T$-periodic. Actually, we prove that $\widehat{T}{}{(s)}_n[f]$, $s=0,1,2,$ are exact for a class of singular integrals involving $T$-periodic trigonometric polynomials of degree at most $n-1$; that is, $$ \widehat{T}{}{(s)}_n[f]=I[f]\quad\text{when\ \ $f(x)=\frac{\cos\frac{\pi(x-t)}{T}}{\sin3\frac{\pi(x-t)}{T}}\,\sum{n-1}_{m=-(n-1)} c_m\exp(\mrm{i}2m\pi x/T)$.}$$ We also prove that, when $u(z)$ is analytic in a strip $\big|\text{Im}\,z\big|<\sigma$ of the complex $z$-plane, the errors in all three $\widehat{T}{}{(s)}_n[f]$ are $O(e{-2n\pi\sigma/T})$ as $n\to\infty$, for all practical purposes.

Citations (6)

Summary

We haven't generated a summary for this paper yet.