Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The true reinforced random walk with bias (1206.1550v1)

Published 7 Jun 2012 in cond-mat.stat-mech

Abstract: We consider a self-attracting random walk in dimension d=1, in presence of a field of strength s, which biases the walker toward a target site. We focus on the dynamic case (true reinforced random walk), where memory effects are implemented at each time step, differently from the static case, where memory effects are accounted for globally. We analyze in details the asymptotic long-time behavior of the walker through the main statistical quantities (e.g. distinct sites visited, end-to-end distance) and we discuss a possible mapping between such dynamic self-attracting model and the trapping problem for a simple random walk, in analogy with the static model. Moreover, we find that, for any s>0, the random walk behavior switches to ballistic and that field effects always prevail on memory effects without any singularity, already in d=1; this is in contrast with the behavior observed in the static model.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.