Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Certain Bayesian Network based on Fuzzy knowledge Bases (1206.1319v1)

Published 5 Jun 2012 in cs.AI

Abstract: In this paper, we are trying to examine trade offs between fuzzy logic and certain Bayesian networks and we propose to combine their respective advantages into fuzzy certain Bayesian networks (FCBN), a certain Bayesian networks of fuzzy random variables. This paper deals with different definitions and classifications of uncertainty, sources of uncertainty, and theories and methodologies presented to deal with uncertainty. Fuzzification of crisp certainty degrees to fuzzy variables improves the quality of the network and tends to bring smoothness and robustness in the network performance. The aim is to provide a new approach for decision under uncertainty that combines three methodologies: Bayesian networks certainty distribution and fuzzy logic. Within the framework proposed in this paper, we address the issue of extending the certain networks to a fuzzy certain networks in order to cope with a vagueness and limitations of existing models for decision under imprecise and uncertain knowledge.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Abdelkader Heni (2 papers)
  2. Mohamed Nazih Omri (20 papers)
  3. Adel Alimi (2 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.