Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fuzzy Knowledge Representation Based on Possibilistic and Necessary Bayesian Networks (1206.0918v1)

Published 5 Jun 2012 in cs.AI

Abstract: Within the framework proposed in this paper, we address the issue of extending the certain networks to a fuzzy certain networks in order to cope with a vagueness and limitations of existing models for decision under imprecise and uncertain knowledge. This paper proposes a framework that combines two disciplines to exploit their own advantages in uncertain and imprecise knowledge representation problems. The framework proposed is a possibilistic logic based one in which Bayesian nodes and their properties are represented by local necessity-valued knowledge base. Data in properties are interpreted as set of valuated formulas. In our contribution possibilistic Bayesian networks have a qualitative part and a quantitative part, represented by local knowledge bases. The general idea is to study how a fusion of these two formalisms would permit representing compact way to solve efficiently problems for knowledge representation. We show how to apply possibility and necessity measures to the problem of knowledge representation with large scale data. On the other hand fuzzification of crisp certainty degrees to fuzzy variables improves the quality of the network and tends to bring smoothness and robustness in the network performance. The general aim is to provide a new approach for decision under uncertainty that combines three methodologies: Bayesian networks certainty distribution and fuzzy logic.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Abdelkader Heni (2 papers)
  2. Mohamed Nazih Omri (20 papers)
  3. Adel Alimi (2 papers)
Citations (3)