Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantifying Uncertainty in Risk Assessment using Fuzzy Theory (2009.09334v1)

Published 20 Sep 2020 in cs.AI and math.OC

Abstract: Risk specialists are trying to understand risk better and use complex models for risk assessment, while many risks are not yet well understood. The lack of empirical data and complex causal and outcome relationships make it difficult to estimate the degree to which certain risk types are exposed. Traditional risk models are based on classical set theory. In comparison, fuzzy logic models are built on fuzzy set theory and are useful for analyzing risks with insufficient knowledge or inaccurate data. Fuzzy logic systems help to make large-scale risk management frameworks more simple. For risks that do not have an appropriate probability model, a fuzzy logic system can help model the cause and effect relationships, assess the level of risk exposure, rank key risks in a consistent way, and consider available data and experts'opinions. Besides, in fuzzy logic systems, some rules explicitly explain the connection, dependence, and relationships between model factors. This can help identify risk mitigation solutions. Resources can be used to mitigate risks with very high levels of exposure and relatively low hedging costs. Fuzzy set and fuzzy logic models can be used with Bayesian and other types of method recognition and decision models, including artificial neural networks and decision tree models. These developed models have the potential to solve difficult risk assessment problems. This research paper explores areas in which fuzzy logic models can be used to improve risk assessment and risk decision making. We will discuss the methodology, framework, and process of using fuzzy logic systems in risk assessment.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Hengameh Fakhravar (5 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.