Papers
Topics
Authors
Recent
Search
2000 character limit reached

Detecting Activations over Graphs using Spanning Tree Wavelet Bases

Published 5 Jun 2012 in stat.ML, cs.IT, math.IT, math.ST, and stat.TH | (1206.0937v3)

Abstract: We consider the detection of activations over graphs under Gaussian noise, where signals are piece-wise constant over the graph. Despite the wide applicability of such a detection algorithm, there has been little success in the development of computationally feasible methods with proveable theoretical guarantees for general graph topologies. We cast this as a hypothesis testing problem, and first provide a universal necessary condition for asymptotic distinguishability of the null and alternative hypotheses. We then introduce the spanning tree wavelet basis over graphs, a localized basis that reflects the topology of the graph, and prove that for any spanning tree, this approach can distinguish null from alternative in a low signal-to-noise regime. Lastly, we improve on this result and show that using the uniform spanning tree in the basis construction yields a randomized test with stronger theoretical guarantees that in many cases matches our necessary conditions. Specifically, we obtain near-optimal performance in edge transitive graphs, $k$-nearest neighbor graphs, and $\epsilon$-graphs.

Citations (51)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.