2000 character limit reached
A note on the Jacobian Conjecture
Published 26 May 2012 in math.AG | (1205.5853v1)
Abstract: In this note, we show that, if the Druzkowski mappings $F(X)=X+(AX){*3}$, i.e. $F(X)=(x_1+(a_{11}x_1+...+a_{1n}x_n)3,...,x_n+(a_{n1}x_1+...+a_{nn}x_n)3)$, satisfies $TrJ((AX){*3})=0$, then $rank(A)\leq 1/2(n+\delta)$ where $\delta$ is the number of diagonal elements of A which are equal to zero. Furthermore, we show the Jacobian Conjecture is true for the Druzkowski mappings in dimension $\leq 9$ in the case $\prod_{i=1}{n}a_{ii}\neq0$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.