Papers
Topics
Authors
Recent
Search
2000 character limit reached

Measurability Aspects of the Compactness Theorem for Sample Compression Schemes

Published 25 May 2012 in stat.ML and cs.LG | (1205.5819v2)

Abstract: It was proved in 1998 by Ben-David and Litman that a concept space has a sample compression scheme of size d if and only if every finite subspace has a sample compression scheme of size d. In the compactness theorem, measurability of the hypotheses of the created sample compression scheme is not guaranteed; at the same time measurability of the hypotheses is a necessary condition for learnability. In this thesis we discuss when a sample compression scheme, created from com- pression schemes on finite subspaces via the compactness theorem, have measurable hypotheses. We show that if X is a standard Borel space with a d-maximum and universally separable concept class C, then (X,C) has a sample compression scheme of size d with universally Borel measurable hypotheses. Additionally we introduce a new variant of compression scheme called a copy sample compression scheme.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.