Geometric Sobolev-like embedding using high-dimensional Menger-like curvature (1205.4112v2)
Abstract: We study a modified version of Lerman-Whitehouse Menger-like curvature defined for m+2 points in an n-dimensional Euclidean space. For 1 <= l <= m+2 and an m-dimensional subset S of Rn we also introduce global versions of this discrete curvature, by taking supremum with respect to m+2-l points on S. We then define geometric curvature energies by integrating one of the global Menger-like curvatures, raised to a certain power p, over all l-tuples of points on S. Next, we prove that if S is compact and m-Ahlfors regular and if p is greater than ml, then the P. Jones' \beta-numbers of S must decay as rt with r \to 0 for some t in (0,1). If S is an immersed C1 manifold or a bilipschitz image of such set then it follows that it is Reifenberg flat with vanishing constant, hence (by a theorem of David, Kenig and Toro) an embedded C{1,t} manifold. We also define a wide class of other sets for which this assertion is true. After that, we bootstrap the exponent t to the optimal one a = 1 - ml/p showing an analogue of the Morrey-Sobolev embedding theorem. Moreover, we obtain a qualitative control over the local graph representations of S only in terms of the energy.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.