Dense flag triangulations of 3-manifolds via extremal graph theory (1205.4060v2)
Abstract: We characterize f-vectors of sufficiently large three-dimensional flag Gorenstein* complexes, essentially confirming a conjecture of Gal [Discrete Comput. Geom., 34 (2), 269--284, 2005]. In particular, this characterizes f-vectors of large flag triangulations of the 3-sphere. Actually, our main result is more general and describes the structure of closed flag 3-manifolds which have many edges. Looking at the 1-skeleta of these manifolds we reduce the problem to a certain question in extremal graph theory. We then resolve this question by employing the Supersaturation Theorem of Erdos and Simonovits.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.