Papers
Topics
Authors
Recent
2000 character limit reached

The homotopy theory of coalgebras over a comonad

Published 17 May 2012 in math.AT, math.CT, and math.RA | (1205.3979v2)

Abstract: Let K be a comonad on a model category M. We provide conditions under which the associated category of K-coalgebras admits a model category structure such that the forgetful functor to M creates both cofibrations and weak equivalences. We provide concrete examples that satisfy our conditions and are relevant in descent theory and in the theory of Hopf-Galois extensions. These examples are specific instances of the following categories of comodules over a coring. For any semihereditary commutative ring R, let A be a dg R-algebra that is homologically simply connected. Let V be an A-coring that is semifree as a left A-module on a degreewise R-free, homologically simply connected graded module of finite type. We show that there is a model category structure on the category of right A-modules satisfying the conditions of our existence theorem with respect to the comonad given by tensoring over A with V and conclude that the category of V-comodules in the category of right A-modules admits a model category structure of the desired type. Finally, under extra conditions on R, A, and V, we describe fibrant replacements in this category of comodules in terms of a generalized cobar construction.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.