Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Randomized Solutions to Convex Programs with Multiple Chance Constraints (1205.2190v3)

Published 10 May 2012 in math.OC

Abstract: The scenario-based optimization approach (scenario approach') provides an intuitive way of approximating the solution to chance-constrained optimization programs, based on finding the optimal solution under a finite number of sampled outcomes of the uncertainty (scenarios'). A key merit of this approach is that it neither assumes knowledge of the uncertainty set, as it is common in robust optimization, nor of its probability distribution, as it is usually required in stochastic optimization. Moreover, the scenario approach is computationally efficient as its solution is based on a deterministic optimization program that is canonically convex, even when the original chance-constrained problem is not. Recently, researchers have obtained theoretical foundations for the scenario approach, providing a direct link between the number of scenarios and bounds on the constraint violation probability. These bounds are tight in the general case of an uncertain optimization problem with a single chance constraint. However, this paper shows that these bounds can be improved in situations where the constraints have a limited `support rank', a new concept that is introduced for the first time. This property is typically found in a large number of practical applications---most importantly, if the problem originally contains multiple chance constraints (e.g. multi-stage uncertain decision problems), or if a chance constraint belongs to a special class of constraints (e.g. linear or quadratic constraints). In these cases the quality of the scenario solution is improved while the same bound on the constraint violation probability is maintained, and also the computational complexity is reduced.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.