On diamond-free subposets of the Boolean lattice (1205.1501v2)
Abstract: The Boolean lattice of dimension two, also known as the diamond, consists of four distinct elements with the following property: $A\subset B,C\subset D$. A diamond-free family in the $n$-dimensional Boolean lattice is a subposet such that no four elements form a diamond. Note that elements $B$ and $C$ may or may not be related. There is a diamond-free family in the $n$-dimensional Boolean lattice of size $(2-o(1)){n\choose\lfloor n/2\rfloor}$. In this paper, we prove that any diamond-free family in the $n$-dimensional Boolean lattice has size at most $(2.25+o(1)){n\choose\lfloor n/2\rfloor}$. Furthermore, we show that the so-called Lubell function of a diamond-free family in the $n$-dimensional Boolean lattice is at most $2.25+o(1)$, which is asymptotically best possible.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.