Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Adaptive Nonparametric Empirical Bayes Estimation Via Wavelet Series: the Minimax Study (1205.0990v2)

Published 4 May 2012 in math.ST and stat.TH

Abstract: In the present paper, we derive lower bounds for the risk of the nonparametric empirical Bayes estimators. In order to attain the optimal convergence rate, we propose generalization of the linear empirical Bayes estimation method which takes advantage of the flexibility of the wavelet techniques. We present an empirical Bayes estimator as a wavelet series expansion and estimate coefficients by minimizing the prior risk of the estimator. As a result, estimation of wavelet coefficients requires solution of a well-posed low-dimensional sparse system of linear equations. The dimension of the system depends on the size of wavelet support and smoothness of the Bayes estimator. An adaptive choice of the resolution level is carried out using Lepski (1997) method. The method is computationally efficient and provides asymptotically optimal adaptive EB estimators. The theory is supplemented by numerous examples.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.