Papers
Topics
Authors
Recent
2000 character limit reached

On the acceleration of the double smoothing technique for unconstrained convex optimization problems (1205.0721v1)

Published 3 May 2012 in math.OC

Abstract: In this article we investigate the possibilities of accelerating the double smoothing technique when solving unconstrained nondifferentiable convex optimization problems. This approach relies on the regularization in two steps of the Fenchel dual problem associated to the problem to be solved into an optimization problem having a differentiable strongly convex objective function with Lipschitz continuous gradient. The doubly regularized dual problem is then solved via a fast gradient method. The aim of this paper is to show how do the properties of the functions in the objective of the primal problem influence the implementation of the double smoothing approach and its rate of convergence. The theoretical results are applied to linear inverse problems by making use of different regularization functionals.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.