Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Nonparametric inference on Lévy measures and copulas (1205.0417v2)

Published 2 May 2012 in math.ST and stat.TH

Abstract: In this paper nonparametric methods to assess the multivariate L\'{e}vy measure are introduced. Starting from high-frequency observations of a L\'{e}vy process $\mathbf{X}$, we construct estimators for its tail integrals and the Pareto-L\'{e}vy copula and prove weak convergence of these estimators in certain function spaces. Given n observations of increments over intervals of length $\Delta_n$, the rate of convergence is $k_n{-1/2}$ for $k_n=n\Delta_n$ which is natural concerning inference on the L\'{e}vy measure. Besides extensions to nonequidistant sampling schemes analytic properties of the Pareto-L\'{e}vy copula which, to the best of our knowledge, have not been mentioned before in the literature are provided as well. We conclude with a short simulation study on the performance of our estimators and apply them to real data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.