The Gromoll filtration, KO-characteristic classes and metrics of positive scalar curvature
Abstract: Let X be a closed m-dimensional spin manifold which admits a metric of positive scalar curvature and let Pos(X) be the space of all such metrics. For any g in Pos(X), Hitchin used the KO-valued alpha-invariant to define a homomorphism A_{n-1} from \pi_{n-1}(Pos(X) to KO_{m+n}. He then showed that A_0 is not 0 if m = 8k or 8k+1 and that A_1 is not 0 if m = 8k-1 or 8$. In this paper we use Hitchin's methods and extend these results by proving that A_{8j+1-m} is not 0 whenever m>6 and 8j - m >= 0. The new input are elements with non-trivial alpha-invariant deep down in the Gromoll filtration of the group \Gamma{n+1} = \pi_0(\Diff(Dn, \del)). We show that \alpha(\Gamma{8j+2}_{8j-5}) is not 0 for j>0. This information about elements existing deep in the Gromoll filtration is the second main new result of this note.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.