Papers
Topics
Authors
Recent
2000 character limit reached

Teleparallel Gravity as a Higher Gauge Theory (1204.4339v3)

Published 19 Apr 2012 in gr-qc, math.CT, and math.DG

Abstract: We show that general relativity can be viewed as a higher gauge theory involving a categorical group, or 2-group, called the teleparallel 2-group. On any semi-Riemannian manifold M, we first construct a principal 2-bundle with the Poincare 2-group as its structure 2-group. Any flat metric-preserving connection on M gives a flat 2-connection on this 2-bundle, and the key ingredient of this 2-connection is the torsion. Conversely, every flat strict 2-connection on this 2-bundle arises in this way if M is simply connected and has vanishing 2nd deRham cohomology. Extending from the Poincare 2-group to the teleparallel 2-group, a 2-connection includes an additional piece: a coframe field. Taking advantage of the teleparallel reformulation of general relativity, which uses a coframe field, a flat connection and its torsion, this lets us rewrite general relativity as a theory with a 2-connection for the teleparallel 2-group as its only field.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.