Papers
Topics
Authors
Recent
2000 character limit reached

The open-faced sandwich adjustment for MCMC using estimating functions (1204.3687v1)

Published 17 Apr 2012 in stat.ME and stat.AP

Abstract: The situation frequently arises where working with the likelihood function is problematic. This can happen for several reasons---perhaps the likelihood is prohibitively computationally expensive, perhaps it lacks some robustness property, or perhaps it is simply not known for the model under consideration. In these cases, it is often possible to specify alternative functions of the parameters and the data that can be maximized to obtain asymptotically normal estimates. However, these scenarios present obvious problems if one is interested in applying Bayesian techniques. Here we describe open-faced sandwich adjustment, a way to incorporate a wide class of non-likelihood objective functions within Bayesian-like models to obtain asymptotically valid parameter estimates and inference via MCMC. Two simulation examples show that the method provides accurate frequentist uncertainty estimates. The open-faced sandwich adjustment is applied to a Poisson spatio-temporal model to analyze an ornithology dataset from the citizen science initiative eBird.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.