The open-faced sandwich adjustment for MCMC using estimating functions (1204.3687v1)
Abstract: The situation frequently arises where working with the likelihood function is problematic. This can happen for several reasons---perhaps the likelihood is prohibitively computationally expensive, perhaps it lacks some robustness property, or perhaps it is simply not known for the model under consideration. In these cases, it is often possible to specify alternative functions of the parameters and the data that can be maximized to obtain asymptotically normal estimates. However, these scenarios present obvious problems if one is interested in applying Bayesian techniques. Here we describe open-faced sandwich adjustment, a way to incorporate a wide class of non-likelihood objective functions within Bayesian-like models to obtain asymptotically valid parameter estimates and inference via MCMC. Two simulation examples show that the method provides accurate frequentist uncertainty estimates. The open-faced sandwich adjustment is applied to a Poisson spatio-temporal model to analyze an ornithology dataset from the citizen science initiative eBird.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.