Tools for Malliavin calculus in UMD Banach spaces (1204.2946v2)
Abstract: In this paper we study the Malliavin derivatives and Skorohod integrals for processes taking values in an infinite dimensional space. Such results are motivated by their applications to SPDEs and in particular financial mathematics. Vector-valued Malliavin theory in Banach space E is naturally restricted to spaces E which have the so-called UMD property, which arises in harmonic analysis and stochastic integration theory. We provide several new results and tools for the Malliavin derivatives and Skorohod integrals in an infinite dimensional setting. In particular, we prove weak characterizations, a chain rule for Lipschitz functions, a sufficient condition for pathwise continuity and an Ito formula for non-adapted processes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.