Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the composition and decomposition of positive linear operators III: A non-trivial decomposition of the Bernstein operator (1204.2723v2)

Published 12 Apr 2012 in math.CA

Abstract: The central problem in this technical report is the question if the classical Bernstein operator can be decomposed into nontrivial building blocks where one of the factors is the genuine Beta operator introduced by M\"uhlbach and Lupa\c{s}. We collect several properties of the Beta operator such as injectivity, the eigenstructure and the images of the monomials under its inverse. Moreover, we give a decomposition of the form $B_n = \bar{\mathbb{B}}_n \circ F_n $ where $F_n$ is a nonpositive linear operator having quite interesting properties. We study the images of the monomials under $F_n$, its moments and various representations. Also an asymptotic formula of Voronovskaya type for polynomials is given and a connection with a conjecture of Cooper and Waldron is established. In an appendix numerous examples illustrate the approximation behaviour of $F_n$ in comparison to $B_n$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.