Two-Stage Eagle Strategy with Differential Evolution (1203.6586v1)
Abstract: Efficiency of an optimization process is largely determined by the search algorithm and its fundamental characteristics. In a given optimization, a single type of algorithm is used in most applications. In this paper, we will investigate the Eagle Strategy recently developed for global optimization, which uses a two-stage strategy by combing two different algorithms to improve the overall search efficiency. We will discuss this strategy with differential evolution and then evaluate their performance by solving real-world optimization problems such as pressure vessel and speed reducer design. Results suggest that we can reduce the computing effort by a factor of up to 10 in many applications.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.