Papers
Topics
Authors
Recent
2000 character limit reached

Asset Pricing under uncertainty

Published 26 Mar 2012 in q-fin.PR and math.PR | (1203.5664v1)

Abstract: We study the effect of parameter uncertainty on a stochastic diffusion model, in particular the impact on the pricing of contingent claims, using methods from the theory of Dirichlet forms. We apply these techniques to hedging procedures in order to compute the sensitivity of SDE trajectories with respect to parameter perturbations. We show that this analysis can justify endogenously the presence of a bid-ask spread on the option prices. We also prove that if the stochastic differential equation admits a closed form representation then the sensitivities have closed form representations. We examine the case of log-normal diffusion and we show that this framework leads to a smiled implied volatility surface coherent with historical data.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.