Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On the Use of Non-Stationary Policies for Infinite-Horizon Discounted Markov Decision Processes (1203.5532v2)

Published 25 Mar 2012 in cs.AI

Abstract: We consider infinite-horizon $\gamma$-discounted Markov Decision Processes, for which it is known that there exists a stationary optimal policy. We consider the algorithm Value Iteration and the sequence of policies $\pi_1,...,\pi_k$ it implicitely generates until some iteration $k$. We provide performance bounds for non-stationary policies involving the last $m$ generated policies that reduce the state-of-the-art bound for the last stationary policy $\pi_k$ by a factor $\frac{1-\gamma}{1-\gammam}$. In particular, the use of non-stationary policies allows to reduce the usual asymptotic performance bounds of Value Iteration with errors bounded by $\epsilon$ at each iteration from $\frac{\gamma}{(1-\gamma)2}\epsilon$ to $\frac{\gamma}{1-\gamma}\epsilon$, which is significant in the usual situation when $\gamma$ is close to 1. Given BeLLMan operators that can only be computed with some error $\epsilon$, a surprising consequence of this result is that the problem of "computing an approximately optimal non-stationary policy" is much simpler than that of "computing an approximately optimal stationary policy", and even slightly simpler than that of "approximately computing the value of some fixed policy", since this last problem only has a guarantee of $\frac{1}{1-\gamma}\epsilon$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.