Papers
Topics
Authors
Recent
2000 character limit reached

Anderson Localization in Disordered Vibrating Rods

Published 19 Mar 2012 in nlin.CD, cond-mat.dis-nn, cond-mat.mes-hall, and quant-ph | (1203.4241v1)

Abstract: We study, both experimentally and numerically, the Anderson localization phenomenon in torsional waves of a disordered elastic rod, which consists of a cylinder with randomly spaced notches. We find that the normal-mode wave amplitudes are exponentially localized as occurs in disordered solids. The localization length is measured using these wave amplitudes and it is shown to decrease as a function of frequency. The normal-mode spectrum is also measured as well as computed, so its level statistics can be analyzed. Fitting the nearest-neighbor spacing distribution a level repulsion parameter is defined that also varies with frequency. The localization length can then be expressed as a function of the repulsion parameter. There exists a range in which the localization length is a linear function of the repulsion parameter, which is consistent with Random Matrix Theory. However, at low values of the repulsion parameter the linear dependence does not hold.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.