Circular Planar Resistor Networks with Nonlinear and Signed Conductors
Abstract: We consider the inverse boundary value problem in the case of discrete electrical networks containing nonlinear (non-ohmic) resistors. Generalizing work of Curtis, Ingerman, Morrow, Colin de Verdiere, Gitler, and Vertigan, we characterize the circular planar graphs for which the inverse boundary value problem has a solution in this generalized non-linear setting. The answer is the same as in the linear setting. Our method of proof never requires that the resistors behave in a continuous or monotone fashion; this allows us to recover signed conductances in many cases. We apply this to the problem of recovery in graphs that are not circular planar. We also use our results to make a frivolous knot-theoretic statement, and to slightly generalize a fact proved by Lam and Pylyavskyy about factorization schemes in their electrical linear group.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.