2000 character limit reached
Lipschitz Functions on Expanders are Typically Flat (1203.3930v1)
Published 18 Mar 2012 in math.PR
Abstract: This work studies the typical behavior of random integer-valued Lipschitz functions on expander graphs with sufficiently good expansion. We consider two families of functions: M-Lipschitz functions (functions that change by at most M along edges) and integer-homomorphisms (functions that change by exactly 1 along edges). We prove that such functions typically exhibit very small fluctuations. For instance, we show that a uniformly chosen M-Lipschitz function takes only M+1 values on most of the graph, with a double exponential decay for the probability to take other values.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.