Papers
Topics
Authors
Recent
2000 character limit reached

Lipschitz Functions on Expanders are Typically Flat (1203.3930v1)

Published 18 Mar 2012 in math.PR

Abstract: This work studies the typical behavior of random integer-valued Lipschitz functions on expander graphs with sufficiently good expansion. We consider two families of functions: M-Lipschitz functions (functions that change by at most M along edges) and integer-homomorphisms (functions that change by exactly 1 along edges). We prove that such functions typically exhibit very small fluctuations. For instance, we show that a uniformly chosen M-Lipschitz function takes only M+1 values on most of the graph, with a double exponential decay for the probability to take other values.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.