Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

COPAR - Multivariate time series modeling using the COPula AutoRegressive model (1203.3328v3)

Published 15 Mar 2012 in stat.ME

Abstract: Analysis of multivariate time series is a common problem in areas like finance and economics. The classical tool for this purpose are vector autoregressive models. These however are limited to the modeling of linear and symmetric dependence. We propose a novel copula-based model which allows for non-linear and asymmetric modeling of serial as well as between-series dependencies. The model exploits the flexibility of vine copulas which are built up by bivariate copulas only. We describe statistical inference techniques for the new model and demonstrate its usefulness in three relevant applications: We analyze time series of macroeconomic indicators, of electricity load demands and of bond portfolio returns.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube