Papers
Topics
Authors
Recent
2000 character limit reached

The Ruijsenaars self-duality map as a mapping class symplectomorphism (1203.3300v1)

Published 15 Mar 2012 in math-ph, hep-th, math.MP, math.SG, and nlin.SI

Abstract: This is a brief review of the main results of our paper arXiv:1101.1759 that contains a complete global treatment of the compactified trigonometric Ruijsenaars-Schneider system by quasi-Hamiltonian reduction. Confirming previous conjectures of Gorsky and collaborators, we have rigorously established the interpretation of the system in terms of flat SU(n) connections on the one-holed torus and demonstrated that its self-duality symplectomorphism represents the natural action of the standard mapping class generator S on the phase space. The pertinent quasi-Hamiltonian reduced phase space turned out to be symplectomorphic to the complex projective space equipped with a multiple of the Fubini-Study symplectic form and two toric moment maps playing the roles of particle-positions and action-variables that are exchanged by the duality map. Open problems and possible directions for future work are also discussed.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.