Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Radial basis functions for the solution of hypersingular operators on open surfaces (1203.2912v1)

Published 13 Mar 2012 in math.NA

Abstract: We analyze the approximation by radial basis functions of a hypersingular integral equation on an open surface. In order to accommodate the homogeneous essential boundary condition along the surface boundary, scaled radial basis functions on an extended surface and Lagrangian multipliers on the extension are used. We prove that our method converges quasi-optimally. Approximation results for scaled radial basis functions indicate that, for highly regular radial basis functions, the achieved convergence rates are close to the one of low-order conforming boundary element schemes. Numerical experiments confirm our conclusions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.