The Magnus expansion, trees and Knuth's rotation correspondence (1203.2878v1)
Abstract: W. Magnus introduced a particular differential equation characterizing the logarithm of the solution of linear initial value problems for linear operators. The recursive solution of this differential equation leads to a peculiar Lie series, which is known as Magnus expansion, and involves Bernoulli numbers, iterated Lie brackets and integrals. This paper aims at obtaining further insights into the fine structure of the Magnus expansion. By using basic combinatorics on planar rooted trees we prove a closed formula for the Magnus expansion in the context of free dendriform algebra. From this, by using a well-known dendriform algebra structure on the vector space generated by the disjoint union of the symmetric groups, we derive the Mielnik-Pleba\'nski-Strichartz formula for the continuous Baker-Campbell-Hausdorff series.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.