Graph Pricing Problem on Bounded Treewidth, Bounded Genus and k-partite graphs (1203.1940v2)
Abstract: Consider the following problem. A seller has infinite copies of $n$ products represented by nodes in a graph. There are $m$ consumers, each has a budget and wants to buy two products. Consumers are represented by weighted edges. Given the prices of products, each consumer will buy both products she wants, at the given price, if she can afford to. Our objective is to help the seller price the products to maximize her profit. This problem is called {\em graph vertex pricing} ({\sf GVP}) problem and has resisted several recent attempts despite its current simple solution. This motivates the study of this problem on special classes of graphs. In this paper, we study this problem on a large class of graphs such as graphs with bounded treewidth, bounded genus and $k$-partite graphs. We show that there exists an {\sf FPTAS} for {\sf GVP} on graphs with bounded treewidth. This result is also extended to an {\sf FPTAS} for the more general {\em single-minded pricing} problem. On bounded genus graphs we present a {\sf PTAS} and show that {\sf GVP} is {\sf NP}-hard even on planar graphs. We study the Sherali-Adams hierarchy applied to a natural Integer Program formulation that $(1+\epsilon)$-approximates the optimal solution of {\sf GVP}. Sherali-Adams hierarchy has gained much interest recently as a possible approach to develop new approximation algorithms. We show that, when the input graph has bounded treewidth or bounded genus, applying a constant number of rounds of Sherali-Adams hierarchy makes the integrality gap of this natural {\sf LP} arbitrarily small, thus giving a $(1+\epsilon)$-approximate solution to the original {\sf GVP} instance. On $k$-partite graphs, we present a constant-factor approximation algorithm. We further improve the approximation factors for paths, cycles and graphs with degree at most three.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.