The Geometry of Integrable and Superintegrable Systems (1203.1663v1)
Abstract: The group of automorphisms of the geometry of an integrable system is considered. The geometrical structure used to obtain it is provided by a normal form representation of integrable systems that do not depend on any additional geometrical structure like symplectic, Poisson, etc. Such geometrical structure provides a generalized toroidal bundle on the carrier space of the system. Non--canonical diffeomorphisms of such structure generate alternative Hamiltonian structures for complete integrable Hamiltonian systems. The energy-period theorem provides the first non--trivial obstruction for the equivalence of integrable systems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.