Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Lagrangian and Hamiltonian Feynman formulae for some Feller semigroups and their perturbations (1203.1199v1)

Published 6 Mar 2012 in math.PR, math-ph, math.AP, math.FA, and math.MP

Abstract: A Feynman formula is a representation of a solution of an initial (or initial-boundary) value problem for an evolution equation (or, equivalently, a representation of the semigroup resolving the problem) by a limit of $n$-fold iterated integrals of some elementary functions as $n\to\infty$. In this note we obtain some Feynman formulae for a class of semigroups associated with Feller processes. Finite dimensional integrals in the Feynman formulae give approximations for functional integrals in some Feynman--Kac formulae corresponding to the underlying processes. Hence, these Feynman formulae give an effective tool to calculate functional integrals with respect to probability measures generated by these Feller processes and, in particular, to obtain simulations of Feller processes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.