2000 character limit reached
Slow movement of a random walk on the range of a random walk in the presence of an external field
Published 2 Mar 2012 in math.PR | (1203.0405v1)
Abstract: In this article, a localisation result is proved for the biased random walk on the range of a simple random walk in high dimensions (d \geq 5). This demonstrates that, unlike in the supercritical percolation setting, a slowdown effect occurs as soon a non-trivial bias is introduced. The proof applies a decomposition of the underlying simple random walk path at its cut-times to relate the associated biased random walk to a one-dimensional random walk in a random environment in Sinai's regime.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.