Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 32 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Infinite-volume mixing for dynamical systems preserving an infinite measure (1202.6391v1)

Published 28 Feb 2012 in nlin.CD and math.DS

Abstract: In the scope of the statistical description of dynamical systems, one of the defining features of chaos is the tendency of a system to lose memory of its initial conditions (more precisely, of the distribution of its initial conditions). For a dynamical system preserving a probability measure, this property is named `mixing' and is equivalent to the decay of correlations for observables in phase space. For the class of dynamical systems preserving infinite measures, this probabilistic connection is lost and no completely satisfactory definition has yet been found which expresses the idea of losing track of the initial state of a system due to its chaotic dynamics. This is actually on open problem in the field of infinite ergodic theory. Virtually all the definitions that have been attempted so far use "local observables", that is, functions that essentially only "see" finite portions of the phase space. In this note we introduce the concept of "global observable", a function that gauges a certain quantity throughout the phase space. This concept is based on the notion of infinite-volume average, which plays the role of the expected value of a global observable. Endowed with these notions, whose rigorous definition is to be specified on a case-by-case basis, we give a number of definitions of infinite mixing. These fall in two categories: global-global mixing, which expresses the "decorrelation" of two global observables, and global-local mixing, where a global and a local observable are considered instead. These definitions are tested on two types of infinite-measure-preserving dynamical systems, the random walks and the Farey map.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube